August, 2005
Journal of Food Protection: Volume 68, Number 8
Page 1628-1634
Cheng-An Hwang
Microbial Food Safety Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
ABSTRACT
This study examined and modeled the behavior of Listeria monocytogenes in ham salad and potato salad as affected by the pH of mayonnaise and storage temperature. An eight-strain cocktail of L. monocytogenes was inoculated on the surface of diced cooked ham or potato. The inoculated ham or potato was then mixed with regular mayonnaise (pH 3.8) or mayonnaise that was adjusted with NaOH to pH 4.2 or 4.6. The cell counts of L. monocytogenes in the salads during storage at 4, 8, or 12″C were enumerated and used to model the behavior of L. monocytogenes in ham salad or potato salad. At each of the storage temperatures, L. monocytogenes was able to grow in ham salad, whereas L. monocytogenes was inactivated in potato salad. The growth rate (log CFU per hour) in ham salad or the inactivation rate (log CFU per hour) in potato salad increased as the storage temperature increased. The duration before growth in ham salad or inactivation in potato salad increased as storage temperature decreased. The mayonnaise pH showed no consistent effect on the growth rate or inactivation rate and duration before growth or inactivation occurred. Mathematical equations that described the growth rate or inactivation rate of L. monocytogenes in both salads as a function of mayonnaise pH and storage temperature were generated and shown to be satisfactory in describing the growth rate or inactivation rate of L. monocytogenes in the ham salad or potato salad.